2G-1 For each of these functions, on the indicated interval, find explicitly the
point ¢ whose existence is pr((li(t((l by the Mean-value Theorem; if there is
more tlmn one such ¢, find all of them. Use the form (1).
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2G-2 Using the form (2), show that
(a) sinz <z, if x>0 M Vi+zr<l+z/2 ifz>0.
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2G-5 a) Suppose f”(x) exists on an interval I and f(z) has a zero at three
distinct points a < b < c on I. Show there is a point p on [a, ¢] where f”(p) = 0.

b) Illustrate part (a) on the cubic f(z) = (z —a)(z — b)(x — ¢).
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2G-6 Using the form (2) of the Mean-value Theorem, prove that on an interval
la, b],

a) f'(x) >0 = f(x) increasing; d) f(x) =0 = f(x)
constant.
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3A-1 Compute the differentials df () of the following functions.

a) d(z” +sin1) b) dy/x ¢) d(z'° — 8z +6)
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3A-2 Compute the following indefinite integrals
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3A-3 Compute the following indefinite integrals.
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3F-1 Solve the following differential equations

a) dy/dx = (2 + 5)* b) dy/dx = (y+1)~"
oy dy/dx = 3/\/@ drdy/dre = ry?
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3F-2 Solve each differential equation with the given initial condition, and evaluate
the solution at the given value of z:

a) dy/dr = 4zy, y(1) =3. Find y(3).

e) dy/dr =¢¥, y(3)=0. Find y(0). For which values of x is the solution
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3F-4 Newton’s law of cooling says that the rate of change of temperature is
proportional to the temperature difference. In symbols, if a body is at a temperature
T at time ¢t and the surrounding region is at a constant temperature 7, (e for
external), then the rate of change of T is given by

dT/dt = k(T. — T).

The constant k > 0 is a constant of proportionality that depends properties of the
body like specific heat and surface area.

a) Why is k£ > 0 the only physically realistic choice?
%Find the formula for 7" if the initial temperature at time ¢ = 0 is Tj.

){Show that T' —» T, as t — oo.

& Suppose that an ingot leaves the forge at a temperature of 680° Celsius in
a room at 40° Celsius. It cools to 200° in eight hours. How many hours does it take
to cool from 680° to 50°7 (It is simplest to keep track of the temperature difference
T — T, rather than T. The temperature difference undergoes exponential decay.)

e) Suppose that an ingot at 1000° cools to 800° in one hour and to 700° in
two hours. Find the temperature of the surrounding air.

f) Show that y(t) = T'(t — to) also satisfies Newton’s law of cooling for any
constant to. Write out the formula for T'(¢t — tp) and show that it is the same as
the formula in E10/17 for y(t) by identifying the constants k, T, and T with their
rresponding values in the displayed formula in E10/17.
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3F-8 a) Find all plane curves such that the tangent line at P intersects the z-axis
1 unit to the left of the projection of P on the the x-axis.

J Find all plane curves in the first quadrant such that for every point P on
the curve, P bisects the part of the tangent line at P that lies in the first quadrant.
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